MARK SCHEME for the October/November 2011 question paper for the guidance of teachers

9701 CHEMISTRY

9701/43
Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

- Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

1 (a) Cr^{3+} : $\quad 1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{6} \quad 3 \mathrm{~s}^{2} 3 \mathrm{p}^{6} 3 \mathrm{~d}^{3}$
$M n^{2+}: \quad 1 s^{2} 2 s^{2} 2 p^{6} \quad 3 s^{2} 3 p^{6} 3 d^{5}$
(b) (i) Any two from

- H^{+}is on the oxidant/L.H. side of each of the $1 / 2$-equations, or H^{+}is a reactant
- (increasing $\left[\mathrm{H}^{+}\right]$) will make E^{\ominus} more positive
- (increasing $\left[\mathrm{H}^{+}\right]$) will drive the reaction over to the R.H./reductant side or forward direction
(ii) KMnO_{4} : Purple/violet to colourless (allow very pale pink)
$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ Orange to green
(c) (i) $\mathrm{MnO}_{2}+\mathrm{SO}_{2} \longrightarrow \mathrm{MnSO}_{4}\left(\right.$ or $\left.\mathrm{Mn}^{2+}+\mathrm{SO}_{4}{ }^{2-}\right)$
manganese changes/is reduced from +4 to +2 sulfur changes/is oxidised from +4 to +6
(ii) No effect, because H^{+}does not appear in the overall equation or its effect on the $\mathrm{MnO}_{2} / \mathrm{Mn}^{2+}$ change is cancelled out by its effect on the $\mathrm{SO}_{2} / \mathrm{SO}_{4}{ }^{2-}$ change
(d) (i) $\mathrm{MnO}_{2}+4 \mathrm{H}^{+}+\mathrm{Sn}^{2+} \longrightarrow \mathrm{Mn}^{2+}+2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Sn}^{4+}$
(ii) $\mathrm{n}\left(\mathrm{MnO}_{4}^{-}\right)=0.02 \times 18.1 / 1000=3.62 \times 10^{-4} \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{Sn}^{2+}\right)=3.62 \times 10^{-4} \times 5 / 2=9.05 \times 10^{-4} \mathrm{~mol}$
$\mathrm{n}\left(\mathrm{Sn}^{2+}\right)$ that reacted with $\mathrm{MnO}_{2}=(20-9.05) \times 10^{-4}=1.095 \times 10^{-3} \mathrm{~mol}$ reaction is $1: 1$, so this is also $n\left(\mathrm{MnO}_{2}\right)$
mass of $\mathrm{MnO}_{2}=1.095 \times 10^{-3} \times(54.9+16+16)=0.0952 \mathrm{~g}$
$\Rightarrow 95 \%-96 \%$; 2 or more s.f.
[Total: 16]

Page 3	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

2 (a) (i) A molecule/ion/species with a lone pair (of electrons) or electron pair donor...
.... that bonds to a metal ion/transition element...
(ii) ...by means of a dative/coordinate (covalent) bond
(b) (i) straight line from $(0,0.01)$ to point at $(350,0.0028)$ with all points on the line
(ii) order w.r.t. $\mathrm{Cr}(\mathrm{CO})_{6}$ is 1 and order w.r.t. PR_{3} is zero
because (a) $\mathrm{Cr}(\mathrm{CO})_{6}$ graph has a constant half-life (which is 700 s)
or construction lines on graph showing this)
because (b) PR_{3} graph is a straight line (of constant slope) or line shows a constant rate of reaction or no change in rate or shows a linear decrease
(iii) rate $=\mathrm{k}\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
$\mathrm{k}=(0.9-1.1) \times 10^{-3}\left(\mathrm{~s}^{-1}\right)$ (one or more s.f.)
either rate $0=0.01 / 1020=9.8 \times 10^{-6} \mathrm{~mol} \mathrm{sec}^{-1}$ when $\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]=0.01 \mathrm{~mol} \mathrm{dm}^{-3}$
so $k=9.8 \times 10^{-6} / 0.01=9.8 \times 10^{-4}$
or $\quad \mathrm{t}_{1 / 2} \approx 700 \mathrm{sec}$

$$
\begin{equation*}
\mathrm{k}=0.693 / 700=9.9 \times 10^{-4} \tag{1}
\end{equation*}
$$

(iv) (units of k are) $\mathbf{s e c}^{-1}$
(v) N.B. the chosen mechanism must be consistent with the rate equation in (iii). Thus:
either if rate $=\mathrm{k}\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]$
mechanism \mathbf{B} is consistent
because it's the only mechanism that does NOT involve PR_{3} in its slow/rate-determining step or only $\mathrm{Cr}(\mathrm{CO})_{6}$ is involved in slow step or $\left[\mathrm{PR}_{3}\right]$ does not affect the rate
or
if rate $=\mathrm{k}\left[\mathrm{Cr}(\mathrm{CO})_{6}\right]\left[\mathrm{PR}_{3}\right]$, then
mechanism \mathbf{A} or \mathbf{C} or \mathbf{D} is consistent
because both reactants are involved in slow step
[Total: 11]

Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

3 (a) (i) E is $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{NH}_{2}\right) \mathrm{CN}$
(ii) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{CHO}$
(b) (i) a polymer/polypeptide of amino acids, (joined by peptide bonds)
(allow 'chain of amino acids' but not 'sequence': the idea of 'many' has to be conveyed)
(ii)

peptide bond shown in full $(\mathrm{C}=\mathrm{O})$ in an ala-ala fragment in a chain
two repeat units
Allow peptide bond shown in full ($\mathrm{C}=\mathrm{O}$) in a dipeptide ala-ala for 1 mark

(c) (i) HCl or $\mathrm{H}_{2} \mathrm{SO}_{4}$ or NaOH or H^{+}or OH^{-}reagents

+ heat and $\mathrm{H}_{2} \mathrm{O} / \mathrm{aq}\left(\right.$ allow $\mathrm{H}_{3} \mathrm{O}^{+}$).
If T is quoted, $80^{\circ} \mathrm{C}<\mathrm{T}<120^{\circ} \mathrm{C}$. NOT warm. conditions
(ii)
 and

(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions

Page 5	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

(d) (i) $\mathrm{NH}_{3}{ }^{+}-\mathrm{CH}\left(\mathrm{CH}_{3}\right)-\mathrm{CO}_{2}^{-}$
(ii)
compound
(e) (i) A buffer is a solution whose pH stays fairly constant or which maintains roughly the same pH or which resists/minimises changes in pH
when small/moderate amounts of acid $/ \mathrm{H}^{+}$or alkali/ OH^{-}are added
(ii) $\mathrm{NH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}+\mathrm{H}(\mathrm{Cl}) \longrightarrow{ }^{+} \mathrm{NH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CO}_{2} \mathrm{H}\left(+\mathrm{Cl}^{-}\right)$
(iii) blood contain HCO_{3}^{-}(or in an equation)
which absorbs H^{+}or equn $\mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} \longrightarrow \mathrm{H}_{2} \mathrm{CO}_{3}\left(\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}\right)$ or absorbs OH^{-}or equn $\mathrm{OH}^{-}+\mathrm{HCO}_{3}{ }^{-} \longrightarrow \mathrm{CO}_{3}{ }^{2-}+\mathrm{H}_{2} \mathrm{O}$
(iv) $\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{Na}\right]=0.05\left[\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}\right]=0.075$
$\mathrm{pH}=4.76+\log (0.05 / 0.075)=4.58$ or 4.6
[Total: 19]

Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

4 (a) $\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2} \longrightarrow \mathrm{CaO}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
(b) (down the group) nitrates become more stable or require a higher temperature to decompose
as size/radius of (cat)ion increases or charge density of ion decreases so polarisation/distortion of anion/nitrate decreases
(c) (i) $\mathrm{Li}_{2} \mathrm{CO}_{3} \longrightarrow \mathrm{Li}_{2} \mathrm{O}+\mathrm{CO}_{2}$
(ii) radius of Li ion $/ \mathrm{Li}^{+}$is less than that of Na ion $/ \mathrm{Na}^{+}$(or polarising power of M^{+}is greater) [1]
(iii) Brown/orange fumes/gas would be evolved or glowing splint relights Since the nitrate is likely to be thermally unstable or decomposes (just like the carbonate) or the balanced equation: $2 \mathrm{LiNO}_{3} \longrightarrow \mathrm{Li}_{2} \mathrm{O}+2 \mathrm{NO}_{2}+1 / 2 \mathrm{O}_{2}$
[Total: 8]

Page 7	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

5 (a) Alkanes are non-polar or have no dipole or $\mathrm{C}-\mathrm{H}$ bonds are strong or C and H have similar electronegativities
(b) (i) (free) radical substitution or substitution by homolytic fission
(ii) initiation: $\mathrm{Cl}_{2} \longrightarrow 2 \mathrm{C} l^{\circ}$
propagation: $\mathrm{Cl}+\mathrm{C}_{2} \mathrm{H}_{6} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}+\mathrm{HCl}$
$\mathrm{C}_{2} \mathrm{H}_{5}{ }^{-}+\mathrm{Cl}_{2} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}+\mathrm{Cl}^{-}$
termination: $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{+}+\mathrm{Cl} \longrightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
or $\mathrm{Cl}+\mathrm{Cl} \longrightarrow \mathrm{Cl}_{2}$ etc
(iii)

structural formula of by-product	formed by
$\mathbf{C H}_{2} \mathbf{C l}-\mathrm{CH}_{2} \mathrm{Cl}$ (or isomer)	further substitution
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	(termination of $2 \times$) $\mathrm{C}_{2} \mathrm{H}_{5}{ }^{\circ}$
$\mathbf{C H}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ (or isomer)	substitution of $\mathrm{C}_{4} \mathrm{H}_{10}$ by-product

accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\circ}+\mathrm{Cl}_{2}$ or $\mathrm{C}_{4} \mathrm{H}_{9}{ }^{\circ}+\mathrm{Cl}$ or $\mathrm{C}_{4} \mathrm{H}_{10}+\mathrm{Cl}_{2}$ (giving $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$).
do not allow anything more Cl -substituted than dichlorobutane.
N.B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$ is the major product, not a by-product, so do not allow $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$.
(iv) $\mathrm{J} / \mathrm{K}=2.3$: 1 or 7:3 or 21:9
(reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by $9.21 / 9=2.33$)
allow [1] mark if J / K ratio is given as $21: 1$;
[10]
(c)

4 isomers $4 \times[1]$
2 chiral atoms identified correctly, even in incorrect structures

Page 8	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

6 (a) (i) K, because it is the (only) one to contain nitrogen or it's an amino acid or because it contains $\mathrm{CO}_{2} \mathrm{H}$ or NH groups
(ii) molecule: J, polymer: RNA (not DNA)
or molecule: \mathbf{L}, polymer: starch, cellulose, glycogen or polysaccharide (not carbohydrate)
(b) (i) Covalent bonding
(ii) Hydrogen bonding
(iii) lonic/electrovalent bonding or disulphide/-S-S- bonding or van der Waals' forces
(c) (i) Enzymes
(ii) • change in pH

- increase in T (NOT decrease; $\mathrm{T}>40^{\circ} \mathrm{C}$ or "too high" are OK)
- addition of heavy metal ions or specific, e.g. $\mathrm{Hg}^{2+}, \mathrm{Ag}^{+} . \mathrm{Pb}^{2+}$ etc.
any two bullet points [1] + [1]
change in pH disrupts ionic bonds
or metal ions disrupt ionic bonds
or metal ions disrupt -S-S- bonds
or heating disrupts hydrogen bonds
any one [1]
This changes: the 3D structure or shape of the enzyme or the active site

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

$7 \quad$ (a)

structural information	analytical technique
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction
chemical environment of protons in a molecule	NMR (spectroscopy) only
identity of amino acids present in a polypeptide	Electrophoresis / chromatography / mass spectrometry

(b) (i) paper chromatography;

The components partition between the solvent/moving phase and the water/liquid stationary phase or separation relies on different solubilities (of components) in the moving solvent and the stationary water phase.
(ii) thin-layer chromatography.

Separation depends on the differential adsorption of the components onto the solid particles/phase or $\mathrm{Al}_{2} \mathrm{O}_{3}$ or SiO_{2}.
(c) (i) No. of carbon atoms present $=\frac{0.2 \times 100}{5.9 \times 1.1}=3.08$ hence 3 carbons
(ii) Bromine
(iii) One bromine is present as there is only an $\mathrm{M}+2$ peak / no $\mathrm{M}+4$ peak or the M and $\mathrm{M}+2$ peaks are of similar height
(iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests... two $-\mathrm{CH}_{3}$ groups and a lone proton attached to the central carbon atom

Empirical formula of \mathbf{N} is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{Br}$
Hence \mathbf{N} is $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHBr}$ or

Page 10	Mark Scheme: Teachers' version	Syllabus	Paper
	GCE A LEVEL - October/November 2011	9701	43

8 (a) (i) Soluble form would be most effective

(ii) \mathbf{Q}, since the 'mini-pills'/granules/powder have a larger surface area or \mathbf{P}, because it has no protective casing
(iii) The gel coat stops it being broken down while passing through the upper part of the digestive system/stomach or the gel coat is stable to stomach acid.
(b) The drug is taken quickly/directly to the target or more accurate dosing can be achieved

When the drug is taken by mouth it has to pass through the stomach/intestine wall to get into the bloodstream. or some is digested/lost to the system
(c) (i) condensation (polymerisation)
(ii) hydrogen bonds or van der Waals'
(iii) It would change the overall shape of the (drug) molecule The 'fit' into the active site would be less effective
(iv) Hydrolysis
[Total: 10]

