MARK SCHEME for the October/November 2011 question paper

for the guidance of teachers

9701 CHEMISTRY

9701/43

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2011 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2011	9701	43
1	(a) Cr ³⁺ : Mn ²⁺ :	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ³ 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁵		[1] [1] [2]

(b)	(i)	Any two from
-----	-----	--------------

- H^+ is on the oxidant/L.H. side of each of the $\frac{1}{2}$ -equations, or H^+ is a reactant
- (increasing [H⁺]) will make E^e more positive
- (increasing [H⁺]) will drive the reaction over to the R.H./reductant side *or* forward direction

[1] + [1]

(ii)	KMnO ₄ :	Purple/violet to colourless (allow <u>very</u> pale pink)	[1]
	$K_2Cr_2O_7$	Orange to green	[1]
			[4]

(c) (i) $MnO_2 + SO_2 \longrightarrow MnSO_4 (or Mn^{2+} + SO_4^{2-})$ [1]

manganese changes/is reduced from +4 to +2	[1]
sulfur changes/is oxidised from +4 to +6	[1]

- (ii) No effect, because H⁺ does not appear in the overall equation *or* its effect on the MnO₂/Mn²⁺ change is cancelled out by its effect on the SO₂/SO₄²⁻ change [1]
 [4]
- (d) (i) $MnO_2 + 4H^+ + Sn^{2+} \longrightarrow Mn^{2+} + 2H_2O + Sn^{4+}$ [1]

(ii) $n(MnO_4^{-}) = 0.02 \times 18.1/1000 = 3.62 \times 10^{-4} \text{ mol}$	[1]
$n(Sn^{2+})$ = 3.62 × 10 ⁻⁴ × 5/2 = 9.05 × 10 ⁻⁴ mol	[1]
$n(Sn^{2+})$ that reacted with MnO ₂ = (20 – 9.05) × 10 ⁻⁴ = 1.095 × 10 ⁻³ mol	[1]
reaction is 1:1, so this is also n(MnO ₂)	
mass of MnO ₂ = $1.095 \times 10^{-3} \times (54.9+16+16) = 0.0952$ g	[1]
⇒ 95% – 96%; 2 or more s.f.	[1]
	[6]

[Total: 16]

	Page 3	3	Mark Scheme: Teachers' version	Syllabus	Paper			
			GCE A LEVEL – October/November 2011	9701	43			
2	(a) (i)	A molecule/ion/species with a lone pair (of electrons) <i>or</i> electron pair donor that bonds to a metal ion/transition element						
	(ii)	by	means of a dative/coordinate (covalent) bond		[1] [2]			
	(b) (i)	strai	ight line from (0, 0.01) to point at (350, 0.0028) with all	points on the lin	e [1]			
	(ii)		er w.r.t. $Cr(CO)_6$ is 1 and order w.r.t. PR_3 is zero		[1]			
		<i>or</i> co beca	ause (a) $Cr(CO)_6$ graph has a constant half-life (which i onstruction lines on graph showing this) ause (b) PR_3 graph is a straight line (of constant slope eaction <i>or</i> no change in rate <i>or</i> shows a linear decrease) <i>or</i> line shows a	[1] a constant rate [1]			
	(iii)	rate	$= k[Cr(CO)_6]$		[1]			
		k = ((0.9 – 1.1) × 10⁻³ (s ⁻¹) (one or more s.f.)		[1]			
		or	er rate ₀ = $0.01/1020 = 9.8 \times 10^{-6}$ mol sec ⁻¹ when [Cr(Cr so k = $9.8 \times 10^{-6}/0.01 = 9.8 \times 10^{-4}$ t _{1/2} \approx 700 sec k = $0.693/700 = 9.9 \times 10^{-4}$	O) ₆] = 0.01 mol o	dm ^{−3}			
	(iv)	(unit	ts of k are) sec⁻¹		[1]			
	(v)	<i>eithe</i> mec beca	the chosen mechanism must be consistent with the rate r if rate = k[Cr(CO) ₆] thanism B is consistent ause it's the only mechanism that does NOT involve P or only Cr(CO) ₆ is involved in slow step or [PR ₃] does	R₃ in its slow/ra	[1] te-determining			
		or						
		mec	te = k[Cr(CO) ₆][PR ₃], then hanism A or C or D is consistent ause both reactants are involved in slow step		[1] [1] [9]			
					[Total: 11]			

	Page 4	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2011	9701	43
3	(a) (i) E	is CH ₃ CH(NH ₂)CN		[1]
	(ii) C	H_5CH_2CHO		[1] [2]

(b) (i) a polymer/polypeptide of amino acids, (joined by peptide bonds)
 (allow 'chain of amino acids' but not 'sequence': the idea of 'many' has to be conveyed)
 [1]

(ii)

peptide bond shown in full (C=O) in an ala-ala fragment in a chain [1] two repeat units [1]

Allow peptide bond shown in full (C=O) in a dipeptide ala-ala for 1 mark

[3]

(c) (i) $HCl or H_2SO_4 or NaOH or H^+ or OH^-$ reagents [1] + heat and H_2O/aq (allow H_3O^+). If T is quoted, 80 °C < T < 120 °C. NOT warm. conditions [1]

(ii)

(if a structural formula, it must have all H atoms) allow protonated or deprotonated versions [1] + [1] [max 3]

Page 5	Mark Scheme: Teachers' version	Syllabus Paper	
	GCE A LEVEL – October/November 2011	9701	43

⁽d) (i) $NH_3^+ - CH(CH_3) - CO_2^-$

(ii)

[3] **[4]**

(e) (i) A buffer is a solution whose pH stays fairly constant or which maintains roughly the same pH or which resists/minimises changes in pH [1] when small/moderate amounts of acid/H⁺ or alkali/OH⁻ are added [1] (ii) $NH_2CH(CH_3)CO_2H + H(Cl) \longrightarrow {}^{+}NH_3CH(CH_3)CO_2H (+ Cl^{-})$ [1] (iii) blood contain HCO_3^- (or in an equation) [1] $\begin{array}{c} H^{+} + HCO_{3}^{-} \longrightarrow H_{2}CO_{3} (H_{2}O + CO_{2}) \\ OH^{-} + HCO_{3}^{-} \longrightarrow CO_{3}^{2-} + H_{2}O \end{array}$ which absorbs H^+ or equn or absorbs OHor equn [1] (iv) $[CH_3CO_2Na] = 0.05 [CH_3CO_2H] = 0.075$ [1] pH = 4.76 + log (0.05/0.075) = 4.58 or 4.6[1] [7]

[Total: 19]

[1]

	Page 6	Mark Scheme: Teachers' version	Syllabus	Paper
		GCE A LEVEL – October/November 2011	9701	43
4	(a) Ca(N0	$O_3)_2 \longrightarrow CaO + 2NO_2 + \frac{1}{2}O_2$		[1] [1]
	decon as siz	the group) nitrates become more stable or requipose e/radius of (cat) ion increases or charge density of ion de arisation/distortion of anion/nitrate decreases	-	emperature to [1] [1] [1] [3]
	(c) (i) Li	$2CO_3 \longrightarrow Li_2O + CO_2$		[1]
	(ii) ra	dius of Li ion/Li $^{\scriptscriptstyle +}$ is less than that of Na ion/Na $^{\scriptscriptstyle +}$ (or polari	sing power of M	⁺ is greater) [1]
	Ś	own/orange fumes/gas would be evolved <i>or</i> glowing splince the nitrate is likely to be thermally unstable or rbonate) <i>or</i> the balanced equation: $2\text{LiNO}_3 \longrightarrow \text{Li}_2\text{O}$	or decomposes	[1] (just like the [1] [4]

[Total: 8]

	Pa	Page 7			Mark Scheme: Teachers' version	Syllabus	Paper
				GCE	A LEVEL – October/November 2011	9701	43
5	(a)				olar <i>or</i> have no dipole <i>or</i> C–H bonds are stro imilar electronegativities	ng	[1] [1]
	(b)	(i)	(free) radical s	substitution <i>or</i> substitution by homolytic fissio	n	[1]
		(ii)	initia		$Cl_2 \longrightarrow 2Cl^{\bullet}$ $Cl^{\bullet} + C_2H_6 \longrightarrow C_2H_5^{\bullet} + HCl$		[1]
				-	$C_{2}H_{5}^{\bullet} + Cl_{2} \longrightarrow C_{2}H_{5}Cl + Cl^{\bullet}$ $C_{2}H_{5}^{\bullet} + Cl^{\bullet} \longrightarrow C_{2}H_{5}Cl$		[1]
					or $Cl^{\bullet} + Cl^{\bullet} \longrightarrow Cl_2$ etc		[1] all 3 names [1]
		(iii)					

structural formula of by-product	formed by
CH₂CI–CH₂CI (or isomer)	further substitution
CH ₃ CH ₂ CH ₂ CH ₃	(termination of 2 ×) C₂H₅•
CH ₃ CH ₂ CH ₂ CH ₂ CI (or isomer)	substitution of C₄H₁₀ by-product

[3]

accept in the "formed by" column the formulae of radicals that will produce the compound in the "by-product" column, or the reagents, e.g. $C_4H_9^{\bullet} + Cl_2 \text{ or } C_4H_9^{\bullet} + Cl_2 \text{ or } C_4H_9^$

do not allow anything more Cl-substituted than **di**chlorobutane. N.B. C_2H_5Cl is the **major** product, not a **by**-product, so do not allow C_2H_5Cl .

(iv) J/K = 2.3 : 1 or 7:3 or 21:9 [2] (reason: straightforward relative rate suggests 21:1, but there are 9 primary to 1 tertiary, so divide this ratio by 9. 21/9 = 2.33) allow [1] mark if J/K ratio is given as 21:1;

[10]

[max 5]

	Page 8			Scheme: Teachers' version	Syllabus	Paper	
			GCE A LI	EVEL – October/November 2011	9701	43	
6	(a) (i)			(only) one to contain nitrogen <i>or</i> it ontains CO ₂ H <i>or</i> NH groups	s an amino acid	[1]	
	(ii)	 (ii) molecule: J, polymer: RNA (not DNA) or molecule: L, polymer: starch, cellulose, glycogen or polysaccharide (not carbohydrate) 				[1] e	
				([2]	
	(b) (i)	Cova	alent bonding			[1]	
	(ii)	Hydı	rogen bonding			[1]	
	(iii)	lonic	/electrovalent	oonding <i>or</i> disulphide/–S–S– bondi	ng <i>or</i> van der Waals	s' forces [1] [3]	
						[-]	
	(c) (i)	Enzy	ymes			[1]	
	 (ii) • change in pH • increase in T (NOT decrease; T > 40 °C or "too high" are OK) • addition of heavy metal ions <i>or</i> specific, e.g. Hg²⁺, Ag⁺. Pb²⁺ etc. 						
					any two bulle	t points [1] + [1]	
	change in pH disrupts ionic bonds <i>or</i> metal ions disrupt ionic bonds <i>or</i> metal ions disrupt –S–S– bonds <i>or</i> heating disrupts hydrogen bonds						
		0/110	sating disrupts			any one [1]	
	any o This changes: the 3D structure <i>or</i> shape of the enzyme <i>or</i> the active site [n						

[Total: 9]

Page 9	Mark Scheme: Teachers' version	Syllabus	Paper	
	GCE A LEVEL – October/November 2011	9701	43	

7 (a)

structural information	analytical technique	
three-dimensional arrangement of atoms and bonds in a molecule	X-ray crystallography/diffraction	
chemical environment of protons in a molecule	NMR (spectroscopy) only	
identity of amino acids present in a polypeptide	Electrophoresis / chromatography / mass spectrometry	
		[1] + [1] + [1]

[3]

(b) (i) paper chromatography;

The components **partition** between the solvent/moving phase and the water/liquid stationary phase *or* separation relies on different solubilities (of components) in the moving solvent and the stationary water phase. [1]

(ii)	thin-layer chromatography.										
	Separation	depends	on t	the diffe	rential	adsorption	of th	e components	onto	the	solid
	particles/phase or Al_2O_3 or SiO ₂ .									[1]	

[2]

[1]

(c) (i) No. of carbon atoms present =
$$\frac{0.2 \times 100}{5.9 \times 1.1}$$
 = 3.08 hence 3 carbons [1]

- (ii) Bromine
- (iii) One bromine is present as there is only an M+2 peak / no M+4 peak *or* the M and M+2 peaks are of similar height [1]
- (iv) NMR spectrum shows a single hydrogen split by many adjacent protons and 6 protons in an identical chemical environment. This suggests...
 two –CH₃ groups and a lone proton attached to the central carbon atom [1]

Empirical formula of **N** is C_3H_7Br

Hence N is $(CH_3)_2CHBr$ or H CH₃-C-CH₃

Β̈́r

[1]

[1]

[6]

[Total: 11]

P	Page 10		Mark Scheme: Teachers' version	Syllabus	Paper 43		
			GCE A LEVEL – October/November 2011	October/November 2011 9701			
8 (a	a) (i)	Solu	ble form would be most effective		[1]		
	(ii)		nce the 'mini-pills'/granules/powder have a larger surf , because it has no protective casing	ace area	[1]		
	(iii)		gel coat stops it being broken down while passing	through the upp	per part of the		
		•	stive system/stomach e gel coat is stable to stomach acid.		[1] [3]		
/1	•) The	drug	is taken guiddu/directly to the target				
(1	,		is taken quickly/directly to the target accurate dosing can be achieved		[1]		
			e drug is taken by mouth it has to pass through the sto Istream. <i>or</i> some is digested/lost to the system	omach/intestine	wall to get into [1] [2]		
(0	c) (i)	conc	lensation (polymerisation)		[1]		
	(ii)) hydrogen bonds <i>or</i> van der Waals'					
	(iii) It would change the overall shape of the (drug) molecule The 'fit' into the active site would be less effective				[1] + [1]		
	(iv)	Hydı	rolysis		[1] [5]		
					[Total: 10]		